Schulinternes Fachcurriculum für das Fach Physik Sek I und II am

Stand Mai 2025

Präambel

Das Fachcurriculum Physik des Ernst-Barlach Gymnasiums gilt für die Sekundarstufe I und II. Mit dem Fach Physik wird eine Grundbildung zum Verständnis der Natur, Technik und auch gesellschaftlicher Zusammenhänge geschaffen. Gleichzeitig bildet der Physikunterricht eine Grundlage für verschiedene fachwissenschaftliche Studiengänge.

Um diese Ziele zu erreichen, werden in allen Themenfeldern die fachbezogenen Kompetenzbereiche im Fach Physik anvisiert:

• Fachwissen: Physikalische Phänomene, Begriffe, Prinzipien, Fakten, Gesetzmäßigkeiten kennen

• Erkenntnisgewinnung: Experimentelle und andere Untersuchungsmethoden sowie Modelle nutzen

• Kommunikation: Informationen sach- und fachbezogen erschließen und austauschen

• Bewertung: Physikalische Sachverhalte in verschiedenen Kontexten erkennen und bewerten

Dieses Fachcurriculum wird im Rahmen der Fachschaftsarbeit regelmäßig überprüft und überarbeitet.

Leistungsbewertung

Die Leistungsbewertung in Physik erfolgt durch die mündliche Mitarbeit, Tests, Produkte aus dem Unterricht oder Präsentationen von Arbeitsergebnissen und bezieht sich auf alle oben genannten Kompetenzbereiche. In der Sekundarstufe II ist zusätzlich eine Klausur pro Halbjahr vorgesehen. In Jahrgangsstufe 8 wird eine 1-stündige Klassenarbeit geschrieben. Halbjahr und Themenbereich legt die Lehrkraft fest.

Themenübersicht Mittelstufe

Klasse/	7	8	9	10
Wochenstunden	2 WS	2 WS	1 WS	2 WS
Die Reihenfolge der Themen ist nicht vorgegeben.	 Ausbreitung des Lichtes Reflexion an ebenen Flächen Einfache elektrische Schaltungen Statische Kräfte Dichte und Druck Magnetismus, Elektromagnetismus (Grundlagen) 	 Temperatur, Wärmetransport Energie (qualitativ) Geschwindigkeit Beschleunigte Bewegungen Lichtbrechung und optische Abbildungen, Farben 	Stromstärke und Spannung Quantitativer Energiebegriff	 Elementarteilchen Radioaktiver Zerfall Kernenergie Erneuerbare Energien Elektromagnetismus (Vertiefung)

Vereinbarungen zu den Unterrichtseinheiten der Sek I

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht SÜ = Schülerübung/Schülerexperiment, P = Projekt, E = Eigenverantwortliches Lernen, CM = Messwerterfassung mit App bzw. Computer
7	Einfache elektrische Schaltungen	 elektrische Sicherheit Leiter, Isolatoren Schaltzeichen und Schaltpläne Reihen- und Parallelschaltung Und- und Oder-Schaltung mit Schaltern Elektrizitäts- und Energietransport Knotenregel Die Wechselschaltung kann zur Differenzierung verwendet werden. Elektrizitäts- und Energietransport sollten schon früh unterschieden werden. Die Knotenregel ist bei der Einführung zum elektrischen Stromkreis nur argumentativ zu behandeln. Eine Abschätzung der Stromstärke sollte zunächst nur qualitativ erfolgen, zum Beispiel über die Helligkeit von gleichen Glühlampen. Energiebegriffe: elektrische Energie, Lichtenergie, Lampe als Energieumwandler, Batterie als Energiespeicher 	- Sicherheitshinweise elektrischer Strom - Stromkreis mit Lampe: Leiter und Nichtleiter (SÜ) - Aufbau einer Glühlampe - Schaltpläne und Schaltkreiszeichen: Leiter, Batterie, Lampe, Schalter - einfache Stromkreise: eine Lampe, zwei Lampen, parallel, in Reihe (SÜ) - drei Lampen: qualitative Betrachtung der Knotenregel - Sicherheitsschaltung (Mikrowelle) - Licht-Morse-Apparat mit Tippschalter (SÜ) - beleuchtetes "Puppenhaus" (P) - Wechselschaltung/Treppenhausschaltung - Klingelschaltung - Fahrradbeleuchtung - Sicherung - Nulleiter

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht SÜ = Schülerübung/Schülerexperiment, P = Projekt, E = Eigenverantwortliches Lernen, CM = Messwerterfassung mit App bzw. Computer
7	Ausbreitung des Lichts	 Lichtquellen und beleuchtete Gegenstände Lichtdurchlässigkeit Lichtstrahlen / Lichtbündel Schatten, Halbschatten, Kernschatten Finsternisse, Mondphasen, Jahreszeiten Bildentstehung und Bildeigenschaften bei Abbildungen mithilfe einer Blende Streuung und Absorption sollen nur phänomenologisch an beleuchteten Gegenständen behandelt werden. Die Abbildungen an Blenden (Lochkamera), oder Aspekte davon, können auch im Kontext optischer Abbildungen behandelt werden.	 Lichtquellen Lichtstrahlen Schattenportraits (SÜ) Sehen und Gesehenwerden: Lichtreflektoren, Bedeutung der Streuung (diffuse Reflexion), Verkehrssicherheit, Geschichte der Sehtheorien Schatten und Halbschatten (SÜ) Mondphasen (SÜ) Sonnenfinsternis (E) Mondfinsternis (E) Lochkamera (P)
7	Reflexion an ebenen Flächen	 Reflexionsgesetz Umkehrbarkeit des Lichtweges Eigenschaften von Spiegelbildern Wölb- und Hohlspiegel sind nicht verbindlich zu unterrichten, können aber zur Vertiefung genutzt werden. 	- Spiegel und Reflexionsgesetz (SÜ) - benötigte Größe eines Spiegels bestimmen
7	Statische Kräfte	Kraft als gerichtete Größe · Hooke'sches Gesetz · Masse und Gewichtskraft · Kräfteaddition · Wechselwirkungsprinzip Ein Kräftegleichgewicht liegt vor, wenn die (vektorielle) Summe aller Kräfte, die auf einen Körper wirken, Null ergibt. Dies entspricht nicht dem Wechselwirkungsprinzip (Actio gleich Reactio).	- Kräfte Lernstationen (elektrostatische, magnetische, Reibungs- und Gewichtskraft) (SÜ) - Gewichtskraft (SÜ/CM) - Kräfte im Gleichgewicht
7	Dichte und Druck	 Masse, Dichte, Volumen Vergleich der (mittleren) Dichten von Körpern und Flüssigkeiten Druck 	- Messung von Masse und Volumen (SÜ) - Dichte - Formelberechnungen - Lernstationen (Eier-Test, Cola-light, etc.)

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht SÜ = Schülerübung/Schülerexperiment, P = Projekt, E = Eigenverantwortliches Lernen, CM = Messwerterfassung mit App bzw. Computer
		Bei diesem Thema bietet sich anstelle einer fachlichen Strukturierung eine Kontextorientierung (Schwimmen, Schweben und Sinken) in besonderem Maße an. Eine Behandlung des Drucks, die über statische Situationen hinausgeht, ist nicht verbindlich vorgesehen.	 Schwimmen, Sinken, Schweben (SÜ) Archimedes (Theater) Druck in Flüssigkeiten Luftdruck (Stationen) (SÜ) Druckdifferenz als Antrieb für einen Gas- bzw. Flüssigkeitsstrom (Blutdruck) "Wetter" in der Wohnung
7	Magnetismus, Elektromagnetis- mus (Grundlagen)	 magnetische Pole, Anziehung, Abstoßung Magnetisierbarkeit Elementarmagnetmodell Magnetfeldlinien von Stabmagnet und Hufeisenmagnet Magnetfeld der Erde Kompass Magnetfeld eines stromdurchflossenen Leiters und einer Spule Elektromotor Magnetische Pole sind an geeigneter Stelle von elektrischen Polen abzugrenzen. Energiebegriffe: Elektrische Energie und Bewegungsenergie (beim Elektromotor) 	 - Magnetpole (SÜ) - Magnetfeldlinien (SÜ) - Erdmagnetfeld - Magnetisierung/Entmagnetisierung (SÜ) und Elementarmagnete (auch als Lernstationen möglich) - Stromdurchflossener gerader Leiter - Stromdurchflossene Spule (SÜ) - Elektromagnet bauen (SÜ) - Stromstärke (nur qualitativ, Drehspulgerät) - Rechte Faust Regel (Richtung des El.Magneten) - Elektromotor-Bausatz (P)

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht SÜ = Schülerübung/Schülerexperiment, P = Projekt, E = Eigenverantwortliches Lernen, CM = Messwerterfassung mit App bzw. Computer
8	Temperatur, Wärmetransport	 Celsius-Skala Ausdehnung von Stoffen Flüssigkeitsthermometer Aggregatzustände Einfaches Teilchenmodell Kelvinskala Wärme als thermische Energie Wärmeleitung Wärmemitführung (Konvektion) Wärmestrahlung Die Ausdehnung von Stoffen soll qualitativ beschrieben werden. Mit einem einfachen Teilchenmodell lassen sich thermische Phänomene schon früh zum Beispiel in Rollenspielen "begreifen". Ein erster Hinweis auf den Treibhauseffekt, der im Zusammenhang mit den Herausforderungen der Energieversorgung betrachtet wird, sollte bereits an dieser Stelle erfolgen. Die quantitative Analyse von Wärmetransporten kann im Zusammenhang mit dem Thema Herausforderungen der Energieversorgung behandelt werden. 	- Temperatur - Wärme - Temperaturdifferenz als Antrieb für Wärmestrom - Isolierung - Aufnahme von Temperatur-Zeit-Graphen (SÜ/CM) - Auswertung von Wärmekamera-Bildern - Skalierung eines Thermometers - Wärmeleitung, Wärmemitführung (Konvektion), Wärmestrahlung - fest, flüssig, gasförmig (Phasenübergänge) - Anomalie des Wassers
8	Energie (qualitativ)	 - verschiedene Formen von Energie - Energieumwandlung (Energieerhaltung) - Energieflußdiagramme - Energieentwertung 	- Besuch in der Forscherwerkstatt

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht SÜ = Schülerübung/Schülerexperiment, P = Projekt, E = Eigenverantwortliches Lernen, CM = Messwerterfassung mit App bzw. Computer
8	Geschwindigkeit	 Geschwindigkeit und ihre Einheiten Geschwindigkeit als gerichtete Größe Durchschnitts- und Momentangeschwindigkeit Schall- und Lichtgeschwindigkeit Darstellungsformen von Bewegungen: Formel, Zeit-Weg-Diagramm, Wertetabelle, Text Der Begriff der Momentangeschwindigkeit soll ohne exakte mathematische Herleitung eingeführt werden 	 Wertetabellen und Zeit-Weg-Diagramme zu Messungen gleichförmiger Bewegung (SÜ/CM) auch beschleunigte Bewegungen und "bremsende" Bewegungen können als s-t-Diagramm und v-t-Diagramm aufgenommen und gegenübergestellt werden (CM) Bewegungsgeschichten (Text und Diagramm) Unterscheidung von Durchschnitts und Momentangeschwindigkeit Formel und Einheiten Schall- und Lichtgeschwindigkeit
8	Beschleunigte Bewegungen	 gleichförmige und beschleunigte Bewegungen Trägheitsprinzip Kraft als Ursache für Geschwindigkeitsänderung Reibungskräfte Es ist in dieser Unterrichtseinheit zu beachten, dass eine quantitative Analyse beschleunigter Bewegungen der Sekundarstufe II vorbehalten ist. Der Schwerpunkt liegt somit auf der qualitativen Analyse und Interpretation von beschleunigten Bewegungen sowie auf der Kraft als Ursache solcher Bewegungen. 	- Wiederholung: Geschwindigkeit - t-s-Diagramme, t-v-Diagramme aufnehmen und vergleichen (SÜ/CM) - Bewegungsgeschichten, insbesondere ungleichförmige Bewegungen - Kraft und Bewegung - Trägheitsprinzip (Fahrsicherheit) - Bremsweg, Reaktionsweg, Anhalteweg (SÜ)
8	Lichtbrechung und optische Abbildungen, Farben	Brechung und Reflexion an Grenzflächen Totalreflexion sammelnde und zerstreuende Eigenschaften von Linsen Brennweite von Sammellinsen Einfluss der Brennweite auf das reelle Bild Beziehung zwischen Größen und Abständen bei der Linsenabbildung Auge, Sehfehler Lupe (virtuelles Bild)	 Fachbegriffe zur Beschreibung des Lichtwegs (Lot, Einfallswinkel, Grenzschicht,) Brechungsgesetz (SÜ) Totalreflexion (SÜ) Linsen (SÜ) Bildentstehung durch Linsen Bildkonstruktion Abbildungsgleichung (SÜ) Linsengleichung (Nachweis in SÜ) optische Geräte, das Auge (E: Lernplakate erstellen)

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht SÜ = Schülerübung/Schülerexperiment, P = Projekt, E = Eigenverantwortliches Lernen, CM = Messwerterfassung mit App bzw. Computer
		· Farben: spektrale Zerlegung des Lichts · Grundfarben, Mischung von Farben: Farbaddition · Absorption bestimmter Farben: Farbsubtraktion Es ist nicht vorgesehen, die Formel des Brechungsgesetzes zu behandeln. Zur Konstruktion von Lichtstrahlen genügt es, Daten zur Abhängigkeit des Brechungswinkels vom Einfallswinkel zu verwenden. Es sollten auch Phänomene betrachtet werden, bei denen Brechung und (Mehrfach-) Reflexion gemeinsam auftreten. Die Linsengleichung und das Abbildungsgesetz können behandelt werden; auf umfängliche Rechnungen soll jedoch verzichtet werden. Die Behandlung von optischen Täuschungen ist eine mögliche Ergänzung. Bei der Zerlegung des Lichts soll auf die Grenzen des sichtbaren Spektrums (ultraviolett, infrarot) kurz eingegangen werden. Es ist sinnvoll, die Farbaddition am Beispiel von Displays und die Farbsubtraktion am Beispiel der Farben von Kleidungsstücken zu behandeln.	- Fernrohr (SÜ) - Farben, Prisma, Regenbogen, bunte Schatten (Lernstationen)

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht SÜ = Schülerübung/Schülerexperiment, P = Projekt, E = Eigenverantwortliches Lernen, CM = Messwerterfassung mit App bzw. Computer
9	Stromstärke und Spannung	 elektrische Stromstärke elektrische Spannung elektrische Energie und Leistung elektrische Ladung Knoten- und Maschenregel Ohm'sches Gesetz Drähte als Widerstände Reihen- und Parallelschaltung von Widerständen Zur Vorbereitung des Ladungsbegriffs ist zum Beispiel ein Zugang über die Elektrostatik oder über Elektronenröhren möglich. Analogien und Modelle zur Erläuterung der Knoten- und Maschenregel können hilfreich sein. Die Berechnung komplexer Widerstandsnetze ist nicht gefordert. Aufgrund ihrer hohen Verbreitung sollten auch Schaltungen mit Leuchtdioden untersucht werden, wobei die Erklärung der Vorgänge im Innern der Dioden nicht erwartet wird. 	- Elektrostatik (SÜ) - Stromstärke-Messung in Parallel- und Reihenschaltung (SÜ) - Spannung-Messung in Parallel- und Reihenschaltung (SÜ) - Potential - Potential-Nullpunkt - Gesetze in Parallel und Reihenschaltung (SÜ) - Widerstand (SÜ) - Kennlinien aufnehmen: Heißleiter und Kaltleiter (SÜ) - elektrische Leistung (Auswertung des Haushalts, Standby,)
9	Quantitativer Energiebegriff	 elektrische Energie Strahlungsenergie chemische Energie Wärmeenergie Lageenergie Bewegungsenergie Spannenergie 	 Energieumwandlungen inklusive Berechnungen (SÜ) Wirkungsgrad Wirkungsgrad Arbeit, Energie, Leistung Nahrung

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht SÜ = Schülerübung/Schülerexperiment, P = Projekt, E = Eigenverantwortliches Lernen, CM = Messwerterfassung mit App bzw. Computer
10	Elementarteilchen	· Proton, Neutron und Elektron · Kernladungszahl, Massenzahl, Isotope Grundlegende Kenntnisse über den Aufbau der Atome werden im Chemieunterricht vermittelt. Der Physikunterricht konzentriert sich daher auf die Untersuchung von Atomkernen. Für das Verständnis der Vorgänge im Atomkern sind Kenntnisse über Elementarteilchen von grundlegender Bedeutung. Ein kurzer Einblick in das Standardmodell anhand der stabilen Elementarteilchen soll im Unterricht gegeben werden.	
10	Radioaktiver Zerfall	 α-, β-, γ-Zerfall Aktivität Halbwertszeit Zerfallsgesetz Nachweis und Messung radioaktiver Strahlung Nullrate Abschirmung Zerfallsprozesse und Halbwertszeiten lassen sich mit Hilfe von Modellen (zum Beispiel Würfel) darstellen. Es wird eine Absprache mit dem Fach Mathematik hinsichtlich der Einführung von Exponentialfunktionen empfohlen. 	 Atommodelle Radioaktivität (SÜ/Lernstationen): statistische Verteilung bei kurzen Messzeiten, prozentualer Anteil der Strahlungsarten, Abstandsquadratgesetz, Absorption, Paranussasche, Kaliumpulver Halbwertszeit (SÜ: Bierschaum / Würfelexperiment) C-14-Methode (Verwendung des TR) Dosimetrie und Umweltradioaktivität
10	Kernenergie	Kernspaltung und Kettenreaktionen bei Kernkraftwerken und Kernwaffen Kernenergie: Energiebilanzen bei Kernreaktionen Kernfusion in Fusionsreaktoren und in der Sonne Radioaktivität in Umwelt und Medizin Die technische Umsetzung im Kernkraftwerk beziehungsweise Fusionsreaktor ist nur soweit zu behandeln, dass ein Vergleich mit konventionellen Kraftwerken möglich wird.	- Kernspaltung und deren Steuerung - Aufbau von Kernkraftwerken, Fukushima, Tschernobyl, Hiroshima, Nagasaki, Energiemix, (E: Referate)

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht SÜ = Schülerübung/Schülerexperiment, P = Projekt, E = Eigenverantwortliches Lernen, CM = Messwerterfassung mit App bzw. Computer
10	Elektromagnetis- mus (Vertiefung)	 Magnetfeld eines stromdurchflossenen Leiters und einer Spule (Wdh) Induktion Lautsprecher und Mikrofon Elektromotor (Wdh) und Generator Transformator, Hochspannungsleitung Eine mathematische Beschreibung des Induktionsgesetzes ist nicht gefordert. Auf die Behandlung der Drei-Finger-Regel und der Lorentzkraft kann verzichtet werden. Das Kennenlernen des Schrittmotors als Grundlage vieler technischer Anwendungen bietet sich an. 	- Induktion (SÜ/CM) - Lorentzkraft - Motor und Generator - Trafo - Wirkungsgrad - Energiefernleitung
10	Erneuerbare Energien	· Energieversorgung	 Primärenergiemix alternative Energiequellen bzw. erneuerbare Energien Energieaudit

Themenübersicht Oberstufe

Mechanik				
· Kinematik · Dynamik				
Felder Wellen Quanten				
 Homogenes elektrisches Feld Bewegungen in radialsymmetrischen Feldern 	Schwingungen und WellenWelleneigenschaften des Lichts	Teilcheneigenschaften der MaterieTeilcheneigenschaften des Lichts		
 Bewegungen in Magnetfeldern Elektrodynamik Spektren Welleneigenschaften der Materie Quantenobjekte Quantenphysikalisches Atommodell 				
· Mögliche Vertiefungsthemen oder Kontexte: Astronomie, Astrophysik, Relativitätstheorie, Kernphysik, Elementarteilchenphysik, Festkörperphysik, Thermodynamik				

Vereinbarungen zu den Unterrichtseinheiten der Sek II

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht
E0.1	Halbjahresthema: Mechanik	Kinematik: Ort, Zeit, Durchschnitts- und Momentangeschwindigkeit, Beschleunigung gleichförmige und gleichmäßig beschleunigte Bewegung freier Fall waagerechter Wurf Energieerhaltung	Es soll auf die in Klasse 10 durchgeführten quantitativen Betrachtungen zur Energie aufgebaut werden. Besuch beim ZARM in Bremen
		Dynamik: · Masse, Kraft, Beschleunigung · Trägheitsprinzip · Reibungskraft · Impuls · Impuls · Impulserhaltung [Bewegungen in radialsymmetrischen Feldern:] · Bahn- und Winkelgeschwindigkeit · Zentripetalkraft	Hier sollen Kreisbewegungen betrachtet werden. Das Gravitationsgesetz muss hier nicht behandelt werden, sondern soll in Q1 inhaltlich parallel zum Coulomb'schen Gesetz betrachtet werden.

		Eine eigene Unterrichtseinheit zur Wiederholung der gleichförmigen Bewegung ist nicht vorgesehen. Der mathematische Zusammenhang zwischen einer Größe und ihrer zeitlichen Änderungsrate soll basierend auf dem Kenntnisstand der Schülerinnen und Schüler zur Differential- und Integralrechnung im Verlauf der Oberstufe zunehmend an Relevanz gewinnen. Die Integration der Kinematik in die Dynamik von Anfang an kann sinnvoll sein, zum Beispiel indem der Einfluss von Kräften auf Bewegungen als Ursache einer Beschleunigung früh mit behandelt wird.	
S	Halbjahresthema: Schwingungen und Wellen	Schwingungen und Wellen: charakteristische Größen: Schwingungsdauer, Frequenz, Wellenlänge, Amplitude, Elongation, Ausbreitungsgeschwindigkeit Faden- und Federpendel Schwingungsgleichung Longitudinal- und Transversalwellen stehende Wellen	
		 Beugung, Huygens'sches Prinzip Interferenzphänomene: Doppelspalt, dünne Schichten Kohärenz Spektren: z.B. Farben, Töne elektromagnetisches Spektrum diskrete und kontinuierliche Spektren Dopplereffekt Mechanische Wellen sind nur insoweit zu behandeln, als es zum Verständnis der optischen Wellen nötig ist. Dies kann sowohl vorgeschaltet als auch integriert geschehen. Beispiele aus der Akustik stellen eine sinnvolle Ergänzung dar. 	Dünne Schichten qualitativ. Die diskreten Spektren werden an dieser Stelle für Experimente zur Interferenz genutzt. Sie sollen aber erst in Q2.1 begründet und genauer untersucht werden.

Klasse	Thema	Verbindliche Inhalte sowie	Mögliche Umsetzung im Unterricht					
		Vorgaben und Hinweise						
Q1.1	Halbjahresthema: Ladungen in Feldern	Homogenes Elektrisches Feld:	Besuch beim DESY in Hamburg oder im Besucherlabor der CAU (z.B. zur Interferenz)					
		 Spannung und potentielle Energie Feldlinien Bewegung im homogenen elektrischen Feld Beschleunigung und Ablenkung von Ladungen 	Es sollte die Analogie zur gleichmäßig beschleunigten Bewegung und dem waagrechten Wurf aus der Mechanik hergestellt werden.					
		Im Zusammenhang mit der Beschleunigung von Ladungen bietet es sich an, auf die Grenzen der klassischen Physik bei höheren Geschwindigkeiten hinzuweisen.						
		Bewegungen in radialsymmetrischen Feldern:	Es ist keine umfassende Unterrichtseinheit zur Gravitation gefordert.					
		Plattenkondensator:						
		Bewegungen in Magnetfeldern:						

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht
		Teilcheneigenschaften der Materie: · Elementarladung · Masse des Elektrons · e/m-Bestimmung	Die Experimente können sinnvoll mit dem Thema homogene Felder verknüpft werden. Ein Übergang zur Q1.2 kann über Schwingkreise gelingen.
Q1.2	Halbjahresthema: Quantenphysik	Welleneigenschaften des Lichts:	Die in E0.2 behandelten Welleneigenschaften werden hier für Licht fortgesetzt.
		Teilcheneigenschaften des Lichts:	Der Welle-Teilchen-Dualismus, der sich durch Interferenzphänomene und den Photoeffekt für Licht ergibt, soll an dieser Stelle als grundlegender Wesenszug von Quantenobjekten erkannt werden. Dafür kann das Doppelspaltexperiment mit verschiedenen Teilchen grundlegend sein. Eine quantitative Beschreibung von Materiewellen erfolgt in Q2.1.
		Grundlegende Aspekte der Quantentheorie:	

Klasse	Thema	Verbindliche Inhalte sowie Vorgaben und Hinweise	Mögliche Umsetzung im Unterricht
Q2.1	Halbjahresthema: Quantenphysik des Atoms	Welleneigenschaften der Materie: · Materiewellen · De-Broglie-Wellenlänge	
		Quantenmechanisches Atommodell: · Grenzen des Bohr'schen Atommodells · diskrete Spektren (Linienspektren)	qualitativ
		 Emissions- und Absorptionsspektren Zusammenhang zwischen diskretem Spektrum und Energieniveauschema Energieniveaus des Wasserstoffatoms 	Franck-Hertz-Versuch
		· Orbitale des Wasserstoffatoms Viele der anschaulichen klassischen Vorstellungen vom Aufbau der Materie sind im Bereich der Atome nicht mehr anwendbar: Deshalb ist das Bohr'sche Modell auch im Sinne eines Energiestufenmodells zu behandeln. Ziel des Unterrichts ist ein grundlegendes	Die Behandlung des linearen Potentialtopfs kann aufgrund seiner Anschaulichkeit eine sinnvolle Ergänzung sein.
		Verständnis einer quantenmechanischen Beschreibung eines Atoms. Grundsätzlich ist im Bereich der Atomphysik eine Absprache mit der Fachschaft Chemie zu empfehlen. Die Behandlung der Schrödinger-Gleichung ist nicht verbindlich vorgesehen, stellt aber eine mögliche Vertiefung dar.	
Q2.2	Achtung: Kein Unterricht im NaWi Profil nach Kontingentstunden -tafel	Mögliche Vertiefungsthemen oder Kontexte: Astronomie, Astrophysik, Relativitätstheorie, Kernphysik, Elementarteilchenphysik, Festkörperphysik, Thermodynamik	Die Behandlung der Speziellen Relativitätstheorie wird nahegelegt. Auch die Behandlung des Röntgenspektrums und/oder der Bragg- Reflexion wären hier denkbar.

Anhang 1: Medieneinsatz im Fach Physik

Stand 02.05.2025

Kompetenzbereiche:

1 = Suchen, Verarbeiten und Aufbewahren 4 = Schützen und sicher Agieren

2 = Kommunizieren und Kooperieren 5 = Problemlösen und Handeln

3 = Produzieren und Präsentieren 6 = Analysieren und Reflektieren

Klasse	Fachanforderungen	Pädagogisch begründeter Unterrichtsvorschlag	1	2	3	4	5	6	Bedarf an Medien
7		Recherche zu Naturphänomenen, z.B. Sonnenfinsternis	Х						IPads
8	FA S. 17: qualitative und quantitative Experimente mit digitalen Messverfahren	Datenerfassung und -analyse von Bewegungsabläufen mit CASSY o.ä. (Demoexperiment)					x		Windowsrechner, Sensoren
8	FA S. 32 Wärmetransport	Interpretation und Strukturierung von Wärmebildern					Х		IPads
8		Kooperative Datenaufnahme im Online Tabellenkalkulation, z.B. Temperaturverläufe; Schutz der Privatsphäre		X		X			IPads
8		Erstellen und Verwenden eines interaktiven Quiz' (z.B. Wärmelehre)		Х					IPads
9		Erstellen und Verwenden eines interaktiven Quiz' (z.B. Elektrizitätslehre)		Х					IPads
9	Leitfaden S. 41	Lernvideos, z.B. zum elektrischen Strom, analysieren						Х	IPads
10	FA S. 18-19 Informationen erschließen und weitergeben, präsentieren, (S. 33-34 Lagerung bewerten, Chancen) und Risiken der Kernkraft	Recherche und Präsentation gesellschaftlicher Verbindungen zur Kernphysik (Endlager, Strommix, Kernfusion,)	X		X			(X)	IPads
10		Herstellung eigener Erklärvideos zur Lorentzkraft			Х				IPads
10		Online-Experimente (Applet) zum Elektromotor und Generator	Х						IPads
10	FA S. 20: Reflektieren und	Tempolimit, Energiewende						Х	IPads

	bewerten politischer Aussagen					
E0	FA S. 48: Analyse von Bewegung auch anhand von Video und Bildmaterial	Freier Fall, Bremsvorgang etc. mit Handyvideo oder IPad aufnehmen, nach IServ transferieren, mit Tracker auswerten			х	IPads, Laptops
EO	Leitfaden S. 41, Interaktive Simulationen	Interferenz von Wellen mit Geogebra			Х	IPads
EO		Erstellen eines Lernvideos zu actio = reactio		x		
Q1	Leitfaden S. 41, Untersuchung von Online-Experimenten	z.B. Massenspektrometer, Hall-Effekt	Х			IPads
Q1	FA S. 42: Experimente mit computergestützten Messverfahren	Datenerfassung und -analyse von induzierten Strömen sowie resultierenden Kräften mit CASSY o.ä.			х	Windowsrechner, Sensoren
Q2		Quantenobjekte am Doppelspalt mit Hilfe von Applets	Х			IPads

FA = Fachanforderungen